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An analytic expression for the escape yield of a radical pair (RP) in a micelle under high magnetic fields is
derived by the supercage model. This model is a two time scale model which divides the time evolution into
two consecutive stages. The short time stage describes the initial separation of the partners of the RP, and
the magnetic field dependence of the recombination yield can be described by the usual radical pair theory
of freely diffusing radicals. The decay of a quasi-equilibrium during the second stage is described by rate
equations for the spin density matrix, which for well-defined conditions can be reduced to a set of equations
for the diagonal elements of the density matrix in the basis of true eigenstates of the Hamiltonian of the free
radicals. In the present work we examine the applicability of the high-field limit of this approximation,
which is closely related to the kinetic approach of H. Hayashi and S. Nagakura (Bull. Chem. Soc. Jpn.
1984, 57, 322). General analytic expressions for the magnetic field and relaxation dependence of the
recombination yield during the second stage and for the decay constants are derived. The decay constants
derived by H. Hayashi and S. Nagakura agree with our results. We show that the contribution from the first
stage is significant and how it can be included.

Introduction

Magnetic field effects (MFEs) on photophysical and photo-
chemical reactions involving an intermediate radical pair (RP)
have been well documented in liquid and solid phases; see for
example ref 1. Usually only singlet RPs recombine, and thus
for a triplet precursor the recombination yield is due solely to
the fraction of RPs that evolved into singlet pairs before
reencountering. Consequently, a large recombination yield
requires an effective mixing of singlet and triplet states and/or
a large reencounter probability. Reactions taking place in
micellar solutions are of special interest since the wall of the
micelle acts as a semireflective barrier for the diffusive motion
of the radicals. This confinement effect effectively enhances
the lifetime of the RP and the probability for the individual
partners of the RP to meet again. Therefore, a much more
effective mixing of states takes place. As a result reactions in
micelles show both very large and quite unusual dependences
on the strength of an external magnetic field.2-11

Under normal conditions in homogeneous solutions, only the
so-called radical pair mechanism (RPM) is operative. For
separate radicals at high fields, the singlet state (S) and the T0

triplet state are degenerate and effectively mixed by the
difference in the Zeeman and hyperfine interactions of the two
radicals. For high magnetic fields the energy difference between
the T+ and T- states are too large for any significant mixing to
occur. At low magnetic fields more states are nearly degenerate,
and the ST mixing is maximal when the Zeeman and hyperfine
interactions are of similar magnitudes. The ST- mechanism12

is a level-crossing mechanism that is operative only when the
separation of the radicals are such that the S and T- states are
nearly degenerate. Since the exchange interaction varies rapidly
with the separation of the radicals, the time spend in the ST-
mixing region is usually too short to give rise to any significant
effect.
Hayashi and Nagakura13 pointed out that the RP lifetime in

a micelle could easily be of the same order or even larger than
the spin-lattice relaxation time of the unpaired electron. Since

spin relaxation mixes all electron spin states, it could be the
most important ST-mixing mechanism for micellar or other
confined systems. This mechanism is called the relaxation
mechanism, and Hayashi and Nagakura13 introduced a kinetic
model in order to explain the observed magnetic field depen-
dence of the escape yield and of the time dependence of the
decay of the radical concentration. The model consists of a set
of linear rate equation for the populations of the singlet and the
three high-field triplet electronic spin states of the RP, and in
accordance with the experimental observation the time depen-
dence of the decay of the radical concentration is described as
a sum of exponentials. The model of Hayashi and Nagakura13

has been very successful for the interpretation and classification
of MFEs observed in micelles for a variety of RPs. It has been
applied by many authors, e.g., by Steiner and Wu14 to investigate
the experimentally observed effect of the size of the micelle on
the MFE using an analytic expression for the relaxational rate
caused by the dipolar interaction between the unpaired electron
spins.
Lüders and Salikhov15 treated the relaxation by a Bloch type

equation for the electron spin density matrix. The diffusive
motion of the radicals were described by three simple models
that, however, are not applicable to micellar systems.
For micellar systems a quantitative calculation of MFEs is

considerably complicated by a significant contribution from spin
relaxation. In principle the stochastic Liouville equation (SLE)
can be solved numerically.16,17 But, unfortunately the relaxation
couples almost all of the spin states, and thus so far the problem
has been intractable even on the largest and fastest computers.
A simplified approach is therefore necessary. Recently, it was
shown that the supercage model of micellar systems reduces
the full problem of solving the SLE into two simpler
problems.18-20 The model is essentially a two time scale model;
i.e., the time evolution of a RP in a micelle is divided into two
consecutive steps.
The first step of the supercage model describes the initial

separation of the RP. It terminates approximately when one of
the partners reaches the boundary of the micelle and is reflected
back into the interior of the micelle. The characteristic time ofX Abstract published inAdVance ACS Abstracts,December 15, 1996.
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the first (or geminate) stage is too short for spin relaxation to
be important. Consequently the contribution from this stage
can be calculated by well-established numerical methods17

without having to consider the complications introduced by spin
relaxation.
The second step describes the decay of a quasi-equilibrium

state. When the radicals have collided a few times with the
boundary of the micelle, a quasi-equilibrium distribution of RP
separations is established which decays due to recombination
of the singlet RPs or by escape from the micelle. The second
step is also called the exponential stage because it is described
by rate equations for the spatially averaged spin density matrix.19

Since the spatial variable has disappeared, the computational
problem is reduced to the same size as the usual relaxational
problems. Furthermore a tremendous simplification is possible
if the coherent transition rates betweenall states are much larger
than any noncoherent rate (relaxation, recombination, escape,
etc.). In that case only the diagonal elements (the populations
of the states) need to be retained in the description. This
simplification is called the Johnson-Merrifield approxima-
tion,21,19whose high-field limit is closely related to the kinetic
approach of Hayashi and Nagakura.13

The supercage description of MFEs in micellar systems is
presently the most accurate solvable model. It clarifies the
validity of the rate equation approach of Hayashi and Nagakura13

and provides explicit expressions for the rate constants. Usually,
the dominant contribution to the MFEs arises from the expo-
nential stage, which is the stage described by the rate equations.
But the contribution from the primary stage can also be signi-
ficant and should be included, in particular for high magnetic
fields. The ∆g mechanism (and in fact the radical pair
mechanism) is operative only in the primary (geminate) stage,
and it becomes increasingly important for high magnetic fields.

Theoretical Description

The diffusion of a pair of radicals (a and b) in a micelle can
be modeled as diffusion in a spherically symmetric potential
well. The exact form is probably not important. We use

whereR is the radius of micelle. For simplicity one of the
radicals is assumed to be fixed in the center of the micelle, while
the other radical diffuses with a spatially dependent diffusion
coefficient that models the decrease of the diffusion coefficient
from Ds in the surrounding solution toDm , Ds in the interior
of the micelle. The widthη-1 of the boundary layer of the
micelle is typically much smaller than the radius of the micelle,
i.e.,ηR. 1. The diffusion operator for the relative motion of
the radicals isΓ ) ∇D(∇ + ∇u).
The spin Hamiltonian of the RP is

where

is the isotropic part of the spin Hamiltonian of the free radicals
consisting of the Zeeman interaction and the hyperfine interac-
tion. The electron spin exchange interaction is assumed to
depend exponentially on the separationr of the RP

whered is the distance of closest approach.

We assume that only singlet RPs at contact (r ) d) can react
and use the conventional anticommutator form of the recom-
bination superoperator, i.e.

whereΠs) |S〉〈S| X EI is the projection operator onto the singlet
state of the RP andEI is the unit operator in the nuclear spin
space.
The Stochastic Liouville Equation. The most general

description of the kinetics of RP recombination is provided by
the stochastic Liouville equation (SLE)22

that describes the complete space/spin evolution of the spin
density matrixF(r,t) of the RP. The solution to this equation
generally contains more information than is needed for a
particular problem, and for example the recombination yield F
is calculated as

where the Laplace transform of the spin density matrix

satisfies the steady state SLE

The superoperators appearing in eqs 6 and 9 have the usual
meaning,H× ) [H, ...] is the commutator of the spin Hamil-
tonian,Γ is the diffusion operator,K̂s is the spin dependent
recombination operator, andR̂ is a relaxation superoperator.
The Supercage Model. The results of the previous ar-

ticles23,19,20 can be summarized as follows. The spin/space
evolution of RPs within micelles can be divided into two
stages: The first stage consists of an initial spatial separation
of the RP within the micelle, and it ends with an equilibration
of the spatial distribution due to multiple reflections from the
boundary of the micelle. The second stage is an exponential
evolution and decay of the quasi-equilibrium of the RP in the
micelle. The total recombination yieldF is equal to the sum
of the contributions from the two stages

The characteristic times of the two stages are usually very
different. That of the first stage isR2/Dm, which is typically of
the order 50 ns and is too short for spin-lattice relaxation to
have any effect. The characteristic time for the second stage is
equal to the residence time of the RP in the micelle, which
typically is of the order of 1µs. Thus spin relaxation may be
important for the second stage.
The First or Geminate Stage. The characteristic time of

the first or geminate stage isR2/Dm, which is the average time
it takes a radical to diffuse to the micellar boundary, where it
is most likely reflected. If this time is larger than the reciprocal
of the energy differenceωij ≡ (Ei - Ej)/p between all statesi
and j, i.e.

then there is sufficient time for theS - T0 mixing to occur
before the radical collides with the boundary. Consequently
the recombination probability during the first stage is identical

U(r) ) kTu(r) ) kTu0{tanh[η(r - R)] - 1}/2 (1)

H(r) ) H0 - J(r)(1/2 + 2SaSb) (2)

H0 ) âeB(gaSaz+ gbSbz) + ∑
j

aAjSaI j + ∑
k

bAkSbI k (3)

J(r) ) J0e
-R(r-d) (4)

K̂F ) (ks/2)[Πs,F]+δ(r - d) (5)

F̆ ) (Γ - iH× - K̂ - R̂)F(r,t) (6)

F ) 4πdks Tr[ΠsF̃(d,0)] (7)

F̃(r,s) ≡ ∫0∞F(r,t) e-st dt (8)

sF̃ - F(r,0)) (Γ - iH× - K̂s - R̂)F̃ (9)

F ) F(1) + F(2) (10)

ωij > Dm/R
2 for all i, j (11)
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to that obtained for a geminate RP in an unconstrained volume,
and it can thus be calculated using the free diffusion model.
For high magnetic fields,ωjj ′ is simply two times the singlet-
triplet mixing parameter

and the above condition can therefore be reformulated as

The value on the right-hand side is typically of the order of
0.02 corresponding to a magnetic interaction of 0.04 mT (0.4
G). If the recombination is diffusion controlled and condition
13 is satisfied, then the recombination probability can be
calculated by the previously derived expression24

where the spin exchange relaxation radius is given by25,26

Jh0 ) J0/(DmR2), and, e.g.,Ps
(0) indicates the initial population

of the singlet state.
Exponential Model. During the second (or exponential)

stage a quasi-equilibrium distribution of RP separations is
maintained in the micelle. Averaging the SLE (eq 9) over this
distribution yields a simple exponential SLE26

where all superoperators are independent of the spatial variable.
The superoperatorsŴe and Ŵs describe the effects of the

distance dependent spin exchange interaction, eq 4, and reactiv-
ity, eq 5, respectively. They can be written as19

and

where the rates are given by

andV ) (4π/3)R3 is the volume of the micelle. The quantity
rs e d denotes the effective reaction distance, withrs ) d
corresponding to the diffusion-controlled case. The spin
exchange relaxation radiusre is given by eq 15 and is typically
1-2 timesd.
The irreversible escape from the micelle is described by a

spin independent superoperator Wˆ d that is equal to a unit
operator multiplied by the rate

Intraradical spin-lattice relaxation is described by the opera-
tor Ŵr. It can be written in the general form

whereÊa andÊb are unit operators in the spin spaces of radicals
a and b, respectively. The specific form of the relaxation
operator depends on the relaxation mechanism.
The effect of ST--transitions can be incorporated, but in the

present work it is omitted since it is negligible for high magnetic
fields.
The recombination yieldF is obtained from thes) 0 solution

of eq 16 as

Johnson-Merrifield Approximation. The JMA approxi-
mates the exponential SLE, eq 16, by retaining only the diagonal
elements of the spin density matrix in the basis of eigenstates
of the free HamiltonianH0; cf. ref 19. The diagonal elements
of the density matrix are of course equal to the population of
the states, but it is important that these states are true eigenstates
of the Hamiltonian of the separated radicals. Previous kinetic
treatments applied a basis consisting of singlet and triplet states
which are not eigenstates of the free Hamiltonian.
In the JMA the expression forF(2) is obtained by retaining

only the diagonal elements of the EM expression, eq 23, i.e.

whereσi contains the diagonal elements of the spin density
matrix Fi and the superscript d indicates that only the diagonal
elements (i.e. elements of the typeWnn,mm) of the superoperators
are included. Notice that there is no contribution from theH×
superoperator.
The JMA is applicable if the splittingsωjj ′ of all pairs of

states of the spin HamiltonianH0 are larger thanall the
characteristic values of the above mentioned rateswν (ν ) r, e,
s, d).19 This rather restrictive condition can be written as

For many systems this condition will be satisfied for high
magnetic fields, but it can be violated, e.g., due to accidental
degeneracies of the states or if the magnetic interactions are
small due to small hyperfine constants and/or almost identical
g-values of the radicals.

High-Field Results

In high fields the eigenstates of the free HamiltonianH0, eq
2, are simply the direct product of the eigenstates of thez
components of the spins of all unpaired electrons and nuclei.
Since thez components of the nuclear spins are conserved, the
nuclear spin state appears as an index only. It is therefore
sufficient to consider the electron spin part of the eigenstates
which we will denote by 1, 2, 3, and 4, where

In this basis the matrix representations of the diagonal part
of the superoperators, needed in eq 24, are easily found. The
diffusive escape out of the micelle is proportional to an identity
matrix, i.e.

The recombination superoperator has the form

Q≡ 1/2[(ga - gb)Bâe/p + ∑
j

aAjmj - ∑
k

bAkmk] (12)

q≡ Qd2

Dm
> d2

2R2
(13)

F(1) ) Ps
(0) + PT0

(0) xq
2+ (2re/d- 1)xq

(14)

re )

{d+ R-1 [ln(2|Jh0|) + 1.16] if |Jh0| > 1

d if |Jh0| < 1 and (ksd)/Dm > 1
(15)

sF̃c - F0 ) -(iH× + Ŵr + Ŵe + Ŵs + Ŵd) F̃c (16)

Ŵe ) we ∑
ν)0,(

(|STν〉〈STν| + |TνS〉〈TνS|) (17)

Ŵs ) ws|SS〉〈SS| ) ws(Πs ...Πs) (18)

we ) 4π(Dmre/V) (19)

ws ) 4π(Dmrs/V) (20)

wd ) 4π(DsR/V) exp(-u0) (21)

Ŵr ) Ŵra
X Êb + Êa X Ŵrb

(22)

F(2) ) Tr[Ŵs(iH
× + Ŵr + Ŵe + Ŵs + Ŵd)

-1Fi] (23)

F(2) ) Tr[Ŵs
d(Ŵr

d + Ŵe
d + Ŵs

d + Ŵd
d)-1σi] (24)

ωjj ′ > wν (25)

{|1〉, |2〉, |3〉, |4〉} ≡ {R1R2, R1â2, â1R2, â1â2} (26)

Wd ) wd 1 (27)
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and the superoperator for dephasing due to spin exchange and
recombination is given by

Spin-lattice relaxation is described by the usual Bloch
equations. In the present work we consider only intraradical
relaxation, and thus the radicals relax independently, e.g.

where the relaxational rate of radical a is related to its spin-
lattice relaxation timeT1a by wr1 ) 1/(2T1a). The relaxation
matrix for the RP is easily obtained from the Bloch equations
for the individual radicals. The resulting matrix is

By introducing the notation

the recombination probability can be written compactly as (cf.
eq 24)

where 1b is a vector with all elements equal to unity andσbi

contains the initial populations of the states 1-4. For an
unpolarized triplet stateσbi ) (1/3, 1/6, 1/6, 1/3), and for an initial
singlet stateσbi ) (0, 1/2, 1/2, 0).
Equation 33 can be evaluated explicitly. For a completely

general initial spin configuration of the RP the following analytic
expression is obtained

wherePs andPTi are the initial populations of the singlet and
triplet states, and

is the total population of the RP, i.e., the fraction of RPs that
survived the first step. Note thatPs and PT0 do not appear
separately but only as the sumPs + PT0 which is equal toP2 +
P3, i.e., the total population of eigenstates 2 and 3. For an
unpolarized triplet initial state the expression simplifies to

Equation 34 is very convenient for analysis of experimental
data and does not appear to have been given before. Several
important conclusions can be drawn from it. Only the total
relaxation ratewr appears in the expression; precisely how the

individual relaxation rates of the radicals contribute to the total
rate is immaterial. The result is independent of the dephasing
ratewe. And perhaps most importantly, there is no difference
between S and T0 precursors. In the present description this is
not surprising since S and T0 states contribute equally to the
true eigenstates|2〉 and |3〉. But in the previous kinetic
approach, where the singlet and triplet states were used as the
basis, there was a nonzero difference between these precursor
states. This dependence could only be eliminated by assuming
a very fast (instantaneous) rate of mixing of the S and T0 states.
The present approach shows that there is no such dependence.
Moreover there are no terms corresponding to S-T0 mixing
such as the RPM for the geminate stage.
The initial condition for the exponential stage should be

chosen in accordance with the geminate stage. Only the S and
the T0 parts of the RP can give rise to recombination products
during the first stage. Let the fraction of RPs that react during
the geminate stage be denotedF(1). The initial populations to
be used for the second (exponential) stage is then

where superscript zero indicates the values of the populations
of the precursor states, i.e. before stage one. Note that this
expression is completely general and that for a polarized triplet
state (PT0

(0) * 1/3) only the distribution of the triplet between the
T0 state and the{T+, T-} manifold is important.
Experimentally the time dependence of the decay of the

radical concentration is observed. This can be calculated by
solving the time dependent version of the exponential SLE, eq
16, in the JM approximation, i.e.

whereσb is the diagonal matrix elements of the density matrix
in the high-field basis, eq 26. The radical concentration is equal
to

A general solution can be derived but it is rather lengthy and
not very useful. Fortunately all that is needed for an analysis
of the experimental results is the time constants. In general
N(t) can be written as

whereλi are the eigenvalues ofW and thus one should expect
the decay to be given as a sum of four exponentials. This is
indeed the case for a polarized triplet RP. However, for
unpolarized initial states only two of the exponential terms
remain and the decay constants of these terms are

whereks and kf are the decay constants of the slow and fast
components, respectively. These expressions have also been
obtained by the kinetic approach by incorporating an extra
assumption of an infinitely fast mixing of the singlet and T0

Ws ) ws(0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

) (28)

We )
we

2 (0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

) (29)

dFR,R
a

dt
) -wr1(FR,R

a - Fâ,â
a ) (30)

Wr ) ( wr -wr2 -wr1 0
-wr2 wr 0 -wr1

-wr1 0 wr -wr2

0 -wr1 -wr2 wr

) (31)

W ) Wd + We + Ws + Wr (32)

F(2) ) 1b‚Ws‚W
-1‚σbi (33)

F(2) )
ws[(Ps + PT0)wd + Pwr]

2wd
2 + 4wdwr + wdws + wrws

(34)

P) (Ps + PT0) + (PT+
+ PT-

) (35)

F(2)(T) )
ws(wd + 3wr)

3(2wd
2 + 4wdwr + wdws + wrws)

(36)

Ps + PT0 ) Ps
(0) + PT0

(0) - F(1) (37)

P) 1- F(1) (38)

d
dt

σb ) -Wσb (39)

N(t) )∫0t1b‚σb(t) dt (40)

N(t) ) ∑
i)1

4

Ai e
-λit (41)

ks ) wd + wr + ws/4- xwr
2 + (ws/4)

2

kf ) wd + wr + ws/4+ xwr
2 + (ws/4)

2 (42)
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states.14 If the relaxation rate (wr) is much smaller than the
rate of recombination (ws), then eqs 42 reduce to the expressions
derived by Hayashi and Nagakura13

Similar to eq 34 for the recombination yield these decay
constants are independent of the dephasing ratewe and depend
only on the total relaxation ratewr. The situation is changed,
however, if the initial state is a polarized triplet. Two extra
exponentials will appear with decay constants

However, the experimental accuracy will probably not allow
a decomposition of the decay curve into more than two
exponentials. Moreover, a substantial polarization of the initial
triplet state is needed for an observation of the extra terms.
Accuracy of Analytic Results. The analytic expression, eq

34, for the recombination yield during the exponential stage is
very convenient for the analysis of experimental results. Below
we will illustrate the predicted dependence on an external
magnetic field and investigate the accuracy of the expression.
Finally we will illustrate the importance of including the
recombination yield from the geminate stage.
The relaxation is assumed to be caused by the rotational

modulation of the anisotropic hyperfine (hfi relaxation) and
Zeeman interactions (∆g relaxation). The relaxation rate is
given by the usual expression

whereω ) gâB/p is the transition frequency of the electron
spin,τ is the rotational correlation time of the radical, and the
anisotropy parameters are defined as20

Figure 1 shows the magnetic field dependence of the escape
yield Y(B) for a model system similar to one considered
previously.8 Radical a has one magnetic nucleus with spinI )
1/2 and parameter valuesA/gâ ) 10 mT,∆A/gâ ) 2 mT,∆ga
) 0.002, andτa ) 2.5× 10-10 s. The other radical, which has
no magnetic nucleus, has∆gb ) 0.003 andτb ) 1 × 10-12 s.
The value of the hyperfine constantA has no effect on the high-
field curve, but it becomes important for small magnetic fields
B ≈ A/gâ. The figure displays the results of three different
levels of approximation: the full EM where the complete density
matrix is used, the JMA approximation which uses only the
diagonal elements of the density matrix in the basis of the true
eigenstates of the free Hamiltonian, and the high-field ap-
proximation (hf-JMA) to the JMA where the high-field eigen-
states are used for any field value.
The behavior is easily understandable by noting that the hfi

relaxation decreases withB while the∆g relaxation saturates
for ωτ . 1. Radical a has a large (but typical) value of the
correlation timeτ, and on the linear scale the∆g relaxation
appears to be saturated and the hfi relaxation started to decrease

very close to the origin. Thus the initial maximum ofY(B) at
B ≈ 50 mT is due to the decrease of the hfi relaxation. The
following decrease is due to∆g relaxation of radical b which
saturates at a much higher field since the correlation timeτb is
Very short. The three different sets of curves illustrate the
dependence ofY(B) on the escape rate. It is remarkable how
well the hf-JMA works. Almost down to fields of the order of
the hyperfine interaction does it give results almost indistin-
guishable from the other two approximations (EM and JMA),
and the error is probably smaller than the experimental accuracy.
Figure 2 is a replot of Figure 1 using a logarithmic scale for

the magnetic field. The discrepancy of the hf-JMA at low
magnetic fields is more clearly seen. The deviation between
the JMA and the hf-JMA is due to the change of the eigenstates
away from the high-field states. The deviation between the EM

Figure 1. Magnetic field dependence of the escape yield of a RP in
a micelle for three different values of the escape ratewd. The RP has
a single nucleus (I ) 1/2), A) 10 mT, andga - gb ) 0. The curves are
the results of calculations using the exponential model (EM), the
Johnson-Merrifield approximation (JMA), and the high-field ap-
proximation (hf-JMA) for a triplet precursor and the indicated values
of wd. Other parameters ared ) 5 Å, Dm ) 10-6 cm2 s-1 , R/d ) 5,
Ds/Dm ) 10,Rd ) 10, J0d2/Dm ) 104, rs ) 1, ∆A/gâ ) 2 mT,∆ga )
0.002,∆gb ) 0.003,τa ) 2.5× 10-10 s, andτb ) 1.0× 10-12 s.

Figure 2. Same as Figure 1 but displayed on a logarithmic scale.

ks ) wd + wr

kf ) wd + wr + ws/2 (43)

ke1) wd + wr + we/2- xwr
2 - 4wrwr1 + 4wr1

2 + (we/2)
2

ke2) wd + wr + we/2+ xwr
2 - 4wrwr1 + 4wr1

2 + (we/2)
2

(44)

wr )
6 (∆A)2 τ + 3 (∆g)2 ω2τ

40(1+ ω2τ2)
(45)

(∆g)2 ) 1/3(∆g:∆g) and (∆A)2 ) 1/3(∆A:∆A). (46)
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and the JMA is due to the appearance of degenerate states which
the JMA cannot describe because condition 25 cannot be
satisfied for nearly degenerate states. This is discussed in detail
in ref 20.
Figure 3 shows the effect of including the geminate stage

which obviously is present in an experimental situation. The
parameter values are identical to those used in Figure 1 except
that a difference ing-values of 0.01 has been assumed and the
correlation time of radical b has been assigned a larger value.
It is seen that the contribution from the geminate stage is
important, especially for high magnetic fields where the
difference in g-factors give rise to a large and increasing
contribution via the RPM; cf. eqs 12 and 14. Thus the
contribution from the geminate stage should always be included
if the radicals have differentg-factors. The spike is due to an
accidental degeneracy, which is discussed in ref 20. For
multinuclei systems the intensity of the spike is reduced.
In conclusion the analytic results obtained as the high-field

limit of the JMA are very accurate down to fields of the order

of the hyperfine interactions. The analytic results covered both
the exponential stage and the combined geminate plus expo-
nential stages. The contribution from the geminate stage is
particularly important if the radicals have differentg-values.
The expressions for the rate constants of the radical decay during
the exponential stage agree with the original expressions derived
by Hayashi and Nagakura13 assuming a fast singlet-triplet
mixing.
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Figure 3. Comparison of the EM and its supercage extension (S-EM)
with the corresponding high-field approximations (hf-JMA). The
parameters are as in Figure 1 except forA ) 1 mT, ga - gb ) 0.01,
andτb ) 2.5× 10-11 s.
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